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Figure 1. Novel view renders and the ground truth of the D-NeRF Lego dataset. [8] Our method reduces anomalies in the interpolated
scene by incorporating an image loss generated from blended Gaussians, and outperforms Deformable 3D Gaussians. [13]

Abstract

Novel view synthesis for dynamic scenes is a important
task in computer vision and graphics. Neural Radiance
Fields (NeRF) have been an effective approach for static
images, and recent extensions to dynamic scenes have been
developed. However, NeRF-based methods suffer from high
computational costs and slow rendering speeds. 4D Gaus-
sian Splatting (4D-GS), which was inspired from 3D Gaus-
sian Splatting (3D-GS), provides real-time rendering but
still fails to interpolate across time effectively due to over-
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fitting. To address the overfitting issue, this study intro-
duces novel methods to enhance the interpolation of 3D dy-
namic scenes over time. We propose two key regularization
terms: Single Gaussian Loss, which employs linear inter-
polation on 3D Gaussian parameters, and Multiple Gaus-
sian Loss, which improves training by penalizing significant
deviations of multiple interpolated scenes from the original
scene. These methods show improvements in generating re-
alistic interpolations, advancing the novel view synthesis
for dynamic scene.



1. Introduction

Novel view synthesis for dynamic scenes is a crucial task in
computer vision and graphics, since it plays a critical role
in various ranges such as augmented reality (AR) and vir-
tual reality (VR). NERF [6] is a powerful method to achieve
the novel view synthesis task for static images. Inspired by
NeRF, researchers have expanded the novel view synthesis
task to dynamic scenes [1, 4, 7, 8] and challenged this task
based on the NeRF framework. These metrics focus on the
deformation between each frame which offers interpolated
images for novel views.

However, NeRF based approaches have limitations re-
garding their computational cost and rendering speed. To
solve this problem, 3D Gaussian Splatting (3D-GS) [2] was
introduced, offering a boosted rendering speed by repre-
senting each scene with a sum of 3D Gaussians. This
method supports real-time rendering and is also differen-
tiable, allowing gradient based approaches for optimization.
Recent works [5] applied 3D-GS to dynamic scenes by gen-
erate a set of 3D Gaussians for each frame. However, this
approach is data-heavy and not robust since it does not uti-
lize correspondences between frames.

In order to overcome the drawbacks, recent works have
introduced 4D Gaussian splatting (4D-GS) [11, 14]. The
4D Gaussians represent calculates the Gaussian parameters
of each timestep with a Gaussian Deformation Field, which
takes the initial Gaussian and the desired timestep as the
input. This method represents 3D scene along with their
timewise differences, which greatly reduces the number of
parameters while maintaining the ability to understand the
dynamic motion through time.

However, 4D-GS still has limitations that it can not ef-
fectively interpolate between the time domain as visualized
in Fig. 2. In other words, the neural network is strongly
overfitted to time and does not understand the continuity of
events.

In response, this study introduces novel methods aimed
at enhancing the interpolation of 3D dynamic scenes over
time. Two novel loss terms are proposed to address these
limitations:

• Single Gaussian Loss: We propose a linear interpolation
method operated directly on the 3D Gaussian parameters.
By applying a time-based ratio, this method facilitates
smoother interpolation between adjacent frames, result-
ing in more realistic and continuous outputs.

• Multiple Gaussian Loss: To further improve the training
process of the deformation network, we suggest Multiple
Gaussian loss. The loss function renders the multiple in-
terpolated Gaussians and penalizes significant deviations
from the original scene. This regularization helps reduce
overfitting and encourages the network to create more re-
alistic interpolations with less anomalies.

Figure 2. Visualization of the overfitting phenomenon of De-
formable 3D Gaussians [13]. The baseline model fails to create
natural novel view images in interpolated timesteps (T1/2) com-
pared to timesteps that were given ground truth (T0).

2. Related works
2.1. NeRF for Dynamic Scenes

Neural Radiance Fields (NeRF) is one of the most popular
works to challenge the novel view synthesis task through the
use of Multi-Layer Perceptron (MLP). The MLP maps the
5D input of coordinate x = (x, y, z) and view direction d =
(θ, ϕ) into a 4D output of color c = (r, g, b) and density σ.
From the outputs, NeRF exploits volumetric rendering to
generate images captured from any viewpoint.

NeRF for dynamic scenes share the same idea of radi-
ance fields and volumetric rendering. One branch of dy-
namic NeRF [1, 8] uses a 6D input of (x,d, t) to learn the
radiance field. The MLPs in these methods learn the de-
formation of coordinates through time, including the affect
of motion though the dynamic scenes to the model. An-
other approach merges the point-based approach into NeRF.
[12] This method first generates a neural point cloud from
CNN, then utilizes the point cloud to calculate the radi-
ance field for volumetric rendering. However, the existing
NeRF based methods fail to achieve real-time rendering,
even though they partially produce high-quality outputs.

2.2. Dynamic Gaussian Splatting

3D-GS [2] represents the 3D scene as a point cloud with a
sum of 3D Gaussians. Each 3D Gaussian is expressed as
follows, where x is the position, Σ is the covariance matrix,
and µ is the center of the Gaussian :

p(x|µ,Σ) = e−
1
2 (x−µ)TΣ−1(x−µ) (1)

The optimization process is performed by decomposing the
covariance matrix Σ into scaling matrix S and rotation ma-
trix R:

Σ = RSSTRT (2)

For the rendering process, the visible Gaussians are pro-
jected onto the camera plane, and each pixel is calculated
by the combination of Gaussians.



Figure 3. The overview of our pipeline. Structure from Motion (SfM) [10] initializes the 3D Gaussians for the initial frame. The initial
Gaussian set is deformed by the MLP to obtain the Gaussian set at the desired timestep.

(a) First Image (b) Second Image

Figure 4. Comparison between 3D Gaussian Splatting (a) and 4D
Gaussian Splatting (b). 3D-GS requires a set of Gaussians for ev-
ery frame, while 4D-GS simply renders the sections from the 4D
Gaussian for each frame.

The intuitive method for applying 3D-GS to dynamic
scenes is generating a set of Gaussians for every frame. [3]
However, this method requires a total number of Nt pa-
rameters where N is the number of Gaussian parameters
in a single scene, and t is the number of frames. Since N
is already a large value, this method demands an excessive
data space. Recent studies[9, 11, 13, 14] suggest using a
neural network for obtaining the deformation of the Gaus-
sian parameters between frames. These methods are called
Deformable 3D Gaussians or 4D Gaussian splatting, where
they reduced the number of required parameters to N + F
where F is the number of parameters for the neural network.
The comparison between 3D-GS and 4D-GS are visualized
in Fig. 4

3. Method

The input to the the model is a set of monocular images with
the corresponding camera parameters and timestamps. To
generate a novel view image from the given input, the 3D
Gaussian set at the desired timestep must be constructed.
Yang et al. [13] created a deformation network that calcu-

Figure 5. Visualization of Blended Gaussian Losses: Single Gaus-
sian Loss (Top) and Multiple Gaussian Loss (Bottom). Gaussians
are interpolated into blending gaussians of different timesteps. The
blended gaussians are rendered into novel view images and are
compared with ground truth to calculate Blended Gaussian Loss.

lates the offset for the parameters of each Gaussian. This
deformation network Fθ takes the given time t and center
position x, and returns the deformation parameters of the
particular Gaussian G0:

(δx, δr, δs) = Fθ(γ(x), γ(t)) (3)

where γ represents positional encoding. The initial set of
3D Gaussians, G0 are obtained from a point cloud of a ran-
dom cubic, or alternatively from a point cloud constructed
by Structure from Motion (SfM) if multi-views are avail-
able.

However, this model alone struggles to interpolate
scenes within time properly.

(δx̂τ , δr̂τ , δŝτ ) = Fθ(γ(x), γ(τ)) (4)

In other words, Gt+τ , where τ is a value between 0 and
1, resembles Gt or Gt+1 due to strong overfitting.



Scale 1/2 1/3 1/4 1/5
Method PSNR↑ SSIM↑ MS-SSIM↑ PSNR↑ SSIM↑ MS-SSIM↑ PSNR↑ SSIM↑ MS-SSIM↑ PSNR↑ SSIM↑ MS-SSIM↑
Original 39.0235 0.9912 0.9969 37.1688 0.9866 0.9943 35.7012 0.9831 0.9920 33.9837 0.9781 0.9872

Gaussian Interpolation 39.0416 0.9912 0.9969 37.1760 0.9866 0.9942 35.7217 0.9832 0.9920 34.0632 0.9784 0.9875
Original + LSG 38.9907 0.9911 0.9968 37.3082 0.9870 0.9943 35.7440 0.9831 0.9919 33.7628 0.9777 0.9868

G.I + LSG 39.0130 0.9912 0.9968 37.3077 0.9869 0.9943 35.7792 0.9832 0.9920 33.8522 0.9781 0.9872
Original + LMG 39.0860 0.9911 0.9968 37.4173 0.9869 0.9944 35.7709 0.9830 0.9919 33.8948 0.9779 0.9868

G.I + LMG 39.1106 0.9912 0.9968 37.4139 0.9869 0.9944 35.7926 0.9831 0.9919 33.9803 0.9783 0.9872

Table 1. Quantitative comparison on synthetic dataset. We compare the proposed loss terms with/without Gaussian interpolation in
different downscaling of the inputs. The PSNR, SSIM, MS-SSIM values are reported, while the color for the PSNR cells denote the best
and second best results.

From this baseline model, we experimented three differ-
ent metrics to enhance the interpolation results.

3.1. Gaussian Interpolation

Gaussian interpolation is a method that directly applies lin-
ear interpolation to the gaussian parameters.

(δx̂τ , δr̂τ , δŝτ ) = (1− τ)(δx0, δr0, δs0)

+ τ(δx1, δr1, δs1) (5)

Directly blending the gaussians can be a solution to overfit-
ting issues.

3.2. Blended Gaussian Loss with Single Gaussian

We created an additional loss leveraging the interpolated
Gaussian parameters. In Single Gaussian Loss, only the
midpoint of consecutive Gaussians are considered. Subse-
quently, the novel view image is rendered from the obtained
Gaussian parameters and the L1 loss between the rendered
image and the ground truth is computed. This loss penalizes
anomalies created during Gaussian interpolation.

LSG = L1(I0, Î 1
2
) + L1(I1, Î

′
1
2
) (6)

3.3. Blended Gaussian Loss with Multiple Gaus-
sians

In order to enhance Single Gaussian Loss, the Multiple
Gaussian Loss renders images from multiple Gaussians
with different interpolation ratios. Subsequently,the average
L1 loss is calculated compared to the ground truth images.
In our experiments, 6 images are interpolated and compute
the average loss is utilized as the Multiple Gaussian Loss.
The Blended Gaussian Losses are visualized in Fig. 5.

LMG =
∑
τ∈T0

L1(I0, Îτ ) +
∑
τ∈T1

L1(I1, Î
′
τ ) (7)

4. Experiment
The synthetic dataset [8] was used in the experiment in
order to achieve fast training. To evaluate the interpola-
tion quality, the dataset was downsampled with ratios from
2 to 5 and the remains were used as ground truth. The

Gaussian Deformation Field was trained with six options:
Original loss term, Gaussian interpolation, Original loss
term with Single/Multiple Gaussian Loss, and G.I with Sin-
gle/Multiple Gaussian Loss. The results were evaluated by
rendering the novel view images for views that match the
ground truth, and comparing them with the ground truth via
Peak Signal-to-Noise Ratio (PSNR) and Structural Similar-
ity Index Measure (SSIM). The quantitative results are de-
scribed in Tab. 1.

When Gaussian interpolation was utilized, there was a
consistent increase in the PSNR and SSIM metrics. Addi-
tion of Blended Gaussian Loss contributed to reducing ir-
regularities in the interpolated gaussians as shown in Fig. 1.
In particular, the use of the Multiple Gaussian Loss yielded
the highest metric scores compared to other methods.

5. Conclusion
In this work, we proposed a Gaussian interpolation method
to avoid undesired results from deformation field overfit-
ting. Also, Blended Gaussian Loss is introduced which re-
duces severe distruptions of the interpolated scene. From
the quantitative evaluation of experiment results, both Gaus-
sian interpolation and Blended Gaussian Loss showed im-
provement in SSIM metrics. Comparing the two Blended
Gaussian Losses, Multiple Gaussian Loss performed better
across all cases.

However, despite the improvements shown by Blended
Multiple Gaussian Loss, realistic interpolated scenes can-
not be effectively generated from downsampled training im-
ages. We suggest that leveraging generative models such as
diffusion models to create novel view images may poten-
tially improve the overall quality of the deformation field.



References
[1] Ang Cao and Justin Johnson. Hexplane: A fast representa-

tion for dynamic scenes. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 130–141, 2023. 2

[2] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler,
and George Drettakis. 3d gaussian splatting for real-time
radiance field rendering. ACM Transactions on Graphics, 42
(4):1–14, 2023. 2

[3] Agelos Kratimenos, Jiahui Lei, and Kostas Daniilidis.
Dynmf: Neural motion factorization for real-time dynamic
view synthesis with 3d gaussian splatting. arXiv preprint
arXiv:2312.00112, 2023. 3

[4] Tianye Li, Mira Slavcheva, Michael Zollhoefer, Simon
Green, Christoph Lassner, Changil Kim, Tanner Schmidt,
Steven Lovegrove, Michael Goesele, Richard Newcombe,
et al. Neural 3d video synthesis from multi-view video. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 5521–5531, 2022. 2

[5] Jonathon Luiten, Georgios Kopanas, Bastian Leibe, and
Deva Ramanan. Dynamic 3d gaussians: Tracking
by persistent dynamic view synthesis. arXiv preprint
arXiv:2308.09713, 2023. 2

[6] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. Computer Vision–ECCV 2020, pages 405–421, 2020.
2

[7] Keunhong Park, Utkarsh Sinha, Jonathan T Barron, Sofien
Bouaziz, Dan B Goldman, Steven M Seitz, and Ricardo
Martin-Brualla. Nerfies: Deformable neural radiance fields.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 5865–5874, 2021. 2

[8] Albert Pumarola, Enric Corona, Gerard Pons-Moll, and
Francesc Moreno-Noguer. D-nerf: Neural radiance fields
for dynamic scenes. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
10318–10327, 2021. 1, 2, 4

[9] Jiawei Ren, Liang Pan, Jiaxiang Tang, Chi Zhang, Ang Cao,
Gang Zeng, and Ziwei Liu. Dreamgaussian4d: Genera-
tive 4d gaussian splatting. arXiv preprint arXiv:2312.17142,
2023. 3

[10] Johannes L Schonberger and Jan-Michael Frahm. Structure-
from-motion revisited. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
4104–4113, 2016. 3

[11] Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng
Zhang, Wei Wei, Wenyu Liu, Qi Tian, and Xinggang Wang.
4d gaussian splatting for real-time dynamic scene rendering.
arXiv preprint arXiv:2310.08528, 2023. 2, 3

[12] Qiangeng Xu, Zexiang Xu, Julien Philip, Sai Bi, Zhixin
Shu, Kalyan Sunkavalli, and Ulrich Neumann. Point-
nerf: Point-based neural radiance fields. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 5438–5448, 2022. 2

[13] Ziyi Yang, Xinyu Gao, Wen Zhou, Shaohui Jiao, Yuqing
Zhang, and Xiaogang Jin. Deformable 3d gaussians for

high-fidelity monocular dynamic scene reconstruction. arXiv
preprint arXiv:2309.13101, 2023. 1, 2, 3

[14] Zeyu Yang, Hongye Yang, Zijie Pan, Xiatian Zhu, and Li
Zhang. Real-time photorealistic dynamic scene representa-
tion and rendering with 4d gaussian splatting. arXiv preprint
arXiv:2310.10642, 2023. 2, 3


	. Introduction
	. Related works
	. NeRF for Dynamic Scenes
	. Dynamic Gaussian Splatting

	. Method
	. Gaussian Interpolation
	. Blended Gaussian Loss with Single Gaussian
	. Blended Gaussian Loss with Multiple Gaussians

	. Experiment
	. Conclusion

