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Abstract

Novel view synthesis is an important task in computer vi-
sion and graphics. While Neural Radiance Fields (NeRF)
has been an effective approach for this task, 3D Gaussian
Splatting (3DGS) achieved real-time rendering and differ-
entiable representations. However, 3DGS is highly depen-
dent to the input point cloud, with only limited quantita-
tive research done on how the geometry of the input point
cloud affects the performance of 3DGS. To address this gap,
we propose Geometric Error, which indicates the differ-
ence of geometry between the point cloud and the ground
truth. Additionally, we propose Combined Initialization,
which is inspired from the observation that random initial-
ization shows good results where feature matching is chal-
lenging. This method integrates the strengths of Structure
from Motion (SfM) and Random initialization, by adding
random initial points to the sparse region of the SfM gen-
erated point cloud. Finally, we propose Confidence-Aware
Opacity Initialization, which assigns high initial opacity to
points with low reconstruction error. Our approach outper-
forms SfM initialization for indoor to semi-indoor scenes in
novel view synthesis, while also generating more consistent
quality images across different viewpoints.

1. Introduction

3D scene reconstruction is a crucial task in computer vision
and graphics, since it plays a critical role in various ranges
such as augmented/virtual reality, autonomous driving, and
robotics. Neural Radiance Fields (NERF) [14] is a power-
ful method for this task, utilizing volumetric rendering with
radiance fields. Inspired by NeRF, numerous follow-up re-
searches were made [4, 21, 22] enhancing the novel view
synthesis results (NVS) through different approaches.
However, NeRF based methods have limitations regard-
ing their computational cost and rendering speed. To ad-
dress these issues, 3D Gaussian Splatting (3DGS) [9] was
introduced, offering a boosted rendering speed by repre-
senting each scene with a sum of 3D Gaussians. This
method supports real-time rendering and is also differen-

tiable, allowing gradient based approaches for optimization.

Despite its advantages, 3DGS is highly dependent to its
initial point cloud, typically generated by Structure from
Motion (SfM) [19]. The performance of 3DGS drop sig-
nificantly in areas where SfM struggles to match features,
resulting in sparse or inaccurate point cloud outputs.

In this work, we introduce Geometric Error, which
indicates the geometric difference of a point cloud to its
ground truth, and investigates the effect of Geometric Er-
ror on the performance of 3DGS. Also, we discover that
random initialization can outperform initialization by Struc-
ture from Motion (SfM) [19] in regions where feature
matching is challenging. Inspired from this observation,
we propose Combined Initialization, which rectifies the
StM generated point cloud by removing outliers and adding
initial points to sparse regions. Furthermore, we intro-
duce Confidence-Aware Opacity Initialization, which ad-
dresses the inefficiency of initializing all opacities to a sin-
gle heuristic value. Our method improves the performance
of 3DGS for indoor to semi-indoor scenes, while generating
more consistent quality images across different viewpoints.

2. Related works
2.1. Point Cloud Distance Metrics

Point cloud distance metrics are widely used in the domains
such as computer vision, robotics, and 3D reconstruction,
where quantifying the difference of two point sets is crucial.
Given two point clouds P = {p;}}¥, and Q = {¢;} M, C
R3, there are multiple metrics for calculating the distance
between them.

The Chamfer Distance [2] is the average distance be-
tween pairs of the nearest neighbors:

dotanier(P,Q) = 1 3 Ip = NN (5, Q)|
peP
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where NN (x, P) = argmin,, . p||x — 2'|| is the nearest
neighbor function.
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Figure 1. An overview of the 3D Gaussian Splatting pipeline. The Gaussians are initialized from Structure from Motion, then optimized

through reducing projection error and Adaptive Density Control.
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Figure 2. An overview of Neural Radiance Fields (NeRF). NeRF
utilizes MLP and volumetric rendering for affective Novel View
Synthesis.

The Hausdorff distance [5] is the maximum distance be-
tween any pair of the nearest neighbors:

1
S maxp = NN (. Q)

dChamfer(P Q) =
+ L max|lg - NN(g, P)|
— max —
2 40 q q,

The Earth Mover’s distance, or Wasserstein dis-
tance [15], is the average distance between pairs according
to an optimal correspondence 7 € R™*"™:

degm(P,Q) = min

re(P,Q) Z Z Wz,Jsz C]z||
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where 7; ; is a number between 0 and 1 that denotes the
correspondence between p; and g;. Each of these metrics
exhibit different strengths and weaknesses, making them
suitable under different conditions.

2.2. Neural Radiance Fields (NeRF)

Neural Radiance Fields [14] is a popular NVS method that
exploits Multi-Layer Perceptrons (MLP) and volumetric
rendering for generating novel view images. The NeRF net-
work takes the 3D coordinate x = (z,y, z) and viewpoint
direction d = (6, ¢) as its input and returns the color ¢
and opacity o as its output. NeRF renders the color of the
desired viewpoint by blending the colors with opacity as a
coefficient along the ray, as displayed in Fig. 2

The transmittance at depth ¢ along the selected ray is rep-
resented as:

1) = (- | otr(s))ds ) n

which is the cumulative opacity from the near bound ¢,, to
the depth ¢t. Expanding this approach, the expected color
can be written as follows:

C(r) = / "TWo(rt)e(r(t), dydt @)

n

Various follow-up research exists which are based on
the idea of neural radiance fields volumetric rendering, ex-
panding the NeRF framework. The metrics mostly aim to
achieve faster training time, or a higher quality NVS result
by different ray-marching methods, encodings, or MLPs.
[1, 4,21, 22]

2.3. 3D Gaussian Splatting

3D Gaussian Splatting (3DGS) [10] represents a 3D scene
with a large number of 3D Gaussians. The parameters of
3DGS are the Gaussian covariance matrix >, Gaussian cen-
ter x = (x,y, z), opacity «, and color ¢. The covariance
matrix is represented as X = RSST RT, where ¥, S, and R
are the 3D covariance matrix, scaling matrix, and rotation
matrix, respectively.

The covariance matrix and center defince each Gaussian
as:

Gx) = exp (5~ w75 - )

where p is the center of the Gaussian.

For rendering the 3D scene as novel view images, the
Gaussians are projected onto the desired 2D camera plane
as an affine approximation by ¥/ = JWXW7TJT. Here, J
is the Jacobian matrix of the Camera-to-Image coordinate
transform, and W is the World-to-Camera coordinate trans-
form matrix.

The color of each Gaussian is viewpoint-dependent and
represented using Spherical Harmonics (SH), which takes
the viewpoint direction d = (6, ¢) as the input. Through



[ Input
Ground Geometric
Truth Error

Figure 3. Pipeline of the geometric error calculation algorithm.
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Method | PSNR? | SSIM?T | LPIPS| | Init. Points |
COLMAP 2821 | 0.891 | 0.185 74625
Random 0.01 | 27.63 | 0.881 | 0.203 746
Random 0.1 | 2724 | 0.876 | 0210 7462
Random._1 27.15 | 0.867 | 0221 74625
Random_10 27.19 | 0.867 | 0.223 746250

Table 1. Comparison of SSIM, PSNR, LPIPS, and Initial Points
for COLMAP and Random configurations. The colored cells high-
light the and results.

the training process, the degree of SH increases gradually
for detailed colors. Finally, the 2D projected Gaussians are
rendered onto the image plane by alpha blending, determin-
ing the color of each pixel:

O(x) = Z ¢;; G?P (x) 1:[(1 — o;G?P(x))

Through the optimization process, the Gaussians are ad-
justed using Adaptive Density Control. Redundant Gaus-
sians are deleted, and essential Gaussians are cloned/split
for handling poorly reconstructed regions and floating
Gaussians that cause blurry reconstructions. The pipeline
overview of 3DGS is visualized in Fig. 1.

3. Method

3.1. Geometric Error

COLMAP [17], a widely used Structure from Motion [19]
library, is the most common method for initializing point
clouds for 3DGS. However, since the performance of
COLMAP is highly dependent to the matched features,
scenes involving repeated patterns or sparse views often
produce noisy and sparse point clouds. Although It is well
known that the accuracy of the initial point cloud affects the
performance of 3DGS greatly, no quantitative research has
been made to explain this relation. Therefore, we evaluated
how the geometric error of the initial point cloud - com-
pared to ground truth point cloud - affects the novel view
synthesis results.

The geometric error calculation of a point cloud given
its ground truth is as follows. First, the point cloud is
aligned to the ground truth through the Iterative Closest
Point (ICP) [3] algorithm. Then, we exploit a single-sided

Random PSNR= 30.1383

COLMAP PSNR= 29.3190

Figure 4. Comparison of Novel View Synthesis results with
Random Initialization (Left) and COLMAP Initialization (Right).
Random Initialization shows better reconstruction for the chairs,
which is a repeated pattern where feature matching is challenging.

version of the Chamfer Distance, finding the nearest neigh-
bor for each point on the aligned input point cloud from the
ground truth. This process can be formally defined as:

1
Egeo(To P, Per) =+ >, [Ip" = NN @', Por)|
pteToP

where T' € SE(3) denotes the transformation matrix
obtained by the ICP matching algorithm, P is the recon-
structed point cloud, and Pg7 represents the Ground Truth
point cloud.

For outdoor scenes, the geometric error is calculated by
cropping points inside the ground truth bounding box from
the reconstructed point cloud. This is necessary since the
ground truth does not provide geometric information for the
background. The overall pipeline of the Geometric Error
calculation algorithm is visualized in Fig. 3.

3.2. Combined Initialization

Initializing 3DGS with randomly generated point clouds
generally uncommon. This only happens when providing
an initial point cloud through preprocessing is nearly im-
possible due to sparse or noisy input images. Tab. 1 shows
the random initialization results for the Church scene from
the Tanks and Temples [11] dataset, where COLMAP Ini-
tialization outperforms Random Initialization overall. How-
ever, through this experiment, we discovered that random
initialization may outperform COLMAP for certain render-
ings.

Fig. 4 illustrates the novel view synthesis result for a
frame containing repeated chairs. In renderings where the
repeated patterns cover the majority of the image, Random
Initialization outperformed COLMAP initialization. This
is because COLMAP struggles to match features for the
chairs, leading to empty regions in the initial pointcloud. In
contrast, Random Initialization provides initial points near
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Figure 5. Pipeline of the Combined Initial point cloud generation
process.

the actual chair positions, enabling better reconstruction of
the chairs through Adaptive Density Control.

Inspired from this observation, we suggest a Combined
Initialization metric that integrates COLMAP and Random
Initialization. The method starts with generating a point
cloud through SfM. DBSCAN [6] is applied to the StM
generated point cloud, clustering them into multiple groups.
Points that belong to clusters with fewer than 0.01% of the
total points are classified as noise and removed. This pre-
processing step, referred to as Clustering, significantly re-
duces the geometric error, decreasing it to 15% of the orig-
inal value for the Church scene.

After clustering, Principal Component Analysis (PCA)
is applied to each cluster of the remaining point cloud, de-
termining the three principal axes. Then, the points are pro-
jected onto these axes to calculated its outer bounding box
of the cluster. The bounding box is split into 1000 boxes of
the same size by dividing each edge into 10 equal segments.
For each sub-box, the number of points inside the box is cal-
culated. If a sub-box contains fewer points than 1/10000 of
the total cluster point count—equivalent to 1/10 of the av-
erage point count—random points are generated within the
sub-box. The number of generated points is set to 1/5 of
the average cluster point count. This process, referred to as
Seeding, generates initial points in sparsely reconstructed
regions, providing ADC with a closer starting point for the
cloning step. The overall pipeline of the Combined Initial-
ization process is displayed in Fig. 5.

3.3. Confidence-Aware Opacity Initialization

The opacity of Gaussians («) is a crucial factor that signifi-
cantly influences the performance of 3DGS. In the vanilla
3DGS algorithm, the opacity of all Gaussians are inital-
ized to 0.1. Through the optimization process, most opaci-
ties converge to values below 0.1, while a small subset ap-
proaches values near 1.0. However, because opacity values
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Figure 6. An overview of the Structure-from-Motion pipeline. The
pipeline consists of four major steps: Feature Matching, Triangu-
lation, Perspective-n-Point (PnP), and Bundle Adjustment (BA).

Figure 7. Comparison of the COLMAP generated point cloud
(Left) and the Combined initial point cloud, rectified through the
Clustering and Seeding process (Right), generated from the Meet-
ingroom scene.

change only incrementally at each training iteration, initial-
izing all values to 0.1 is inefficient. In order to resolve this
issue, we suggest Confidence-Aware Opacity Initializa-
tion integrating the confidence of the initial points into the
opacity of Gaussians.

The intuition underlying this approach is that if a point is
accurately reconstructed, it should contribute strongly to the
rendering process and therefore have high opacity. We ini-
tialize opacities based on the reconstruction error from the
3D reconstruction process, assigning higher opacity values
(closer to 1.0) to points with lower reconstruction errors.

COLMAP follows the SfM pipeline outlined in [18],
as shown in Fig. 6. The pipeline consists of four ma-
jor steps: Feature Matching, Triangulation, Perspective-n-
Point (PnP), and Bundle Adjustment (BA). Feature Match-
ing establishes correspondences between images, Triangu-
lation estimates depth for each point, and PnP computes
camera poses. The final reconstruction error is obtained
from the BA process, which jointly optimizes the 3D point
coordinates and camera poses, given the initial estimates
from the preceding steps.

The reprojection error of the i-th 3D point with respect
to the j-th camera is defined as the Euclidean distance be-
tween the 2D ground-truth image observation X;; and the
projection of the 3D reconstructed point X;;:

€ij = Hxij - fiij||2 3

The objective of the optimization process is to minimize
the total reprojection error over all cameras and points:

E= Zeij (4)
i,J



Initialization Method ‘ PSNR*T ‘ SSIM T ‘ LPIPS| ‘ Init. Points | Output Points | Inital Geo. Error | Output Geo. Error
COLMAP 28.21 0.891 0.185 74625 1,566,408 0.4700 0.1240
GT_random_sampled | 28.28 0.895 0.180 74625 1,663,144 0.0000 0.0510
GT_noisy_001 28.08 0.894 0.182 74625 1,641,607 0.0120 0.0515
GT_noisy_005 28.01 0.890 0.188 74625 1,559,763 0.0519 0.0520
GT_-noisy 01 27.96 0.889 0.192 74625 1,489,835 0.0734 0.0534

Table 2. Geometric error and novel view synthesis results for different initial point clouds using the Tanks and Temples Church dataset.
The entries labeled GT_xxx correspond to randomly sampled points from the ground truth point cloud, with a Gaussian noise of mean 0
and standard deviation xxx added to it. The colored cells highlight the and results.

‘ Scene ‘ Init. Points ‘ Clustered ‘ Seeded ‘ Method Exec. Time (s) | # of Points | PSNR | SSIM | LPIPS
COLMAP 61.4 12897 0.9395 | 28.21 | 0.1455
Church 74625 -3346 (-4.5%) +861 (+1.2%) hloc 34.5 8654 0.9552 | 30.56 | 0.1313
Meetingroom 207591 -15713 (-7.1%) | +7443 (+3.7%)
Barn 93512 -8466 (-9.1%) | +2279 (+2.4%) Table 4. Comparison of the geometric reconstruction process,

Table 3. Difference of the number of points through the Clustering
and Seeding process. Clustered denotes the number of outliers
removed by Clustering, and Seeded denotes the number of random
points generated by Seeding.

After optimization using the Levenberg—Marquardt al-
gorithm [12, 13], the final per-point reprojection error e; is
obtained by averaging over all cameras observing the i-th
point:

1
€ = E;% &)

Since this reprojection error is unbounded, it must be
transformed into a confidence value suitable for opacity ini-
tialization. First, the values e; are min-max normalized to
the range [0, 1]. Then, an activation function is applied to
invert the values such that lower errors correspond to higher
confidence. We test two different activation functions, in-
verse and sigmoid:

L
a+bx’ TP o4 ede

finv(e) = (6)

where a, b, c,and d are hyperparameters controlling the
shape and steepness of the function.

The resulting confidence scores are then normalized to
the range [0.05,0.9] and used to initialize the opacity val-
ues. The lower bound of 0.05 corresponds to the threshold
below which Gaussians are removed in the Adaptive Den-
sity Control procedure, while 0.9 is chosen as a practical
upper limit since no Gaussians reach full opacity (i.e., 1.0).

4. Experiment

Dataset For experiments, we used the Tanks and Tem-
ples dataset [11] along with the DTU dataset [8]. Tanks

COLMAP and hloc (Superpoint + SuperGlue). hloc outperforms
COLMAP both in computational efficiency and Novel View Syn-
thesis quality.

and Temples provide a more challenging scene for recon-
struction, while DTU is convenient environment for ex-
periments. For §4.1 we selected Church, an indoor scene
from Tanks and Temples since it is given the ground truth
point cloud and is a challenging scene to reconstruct. Odd
number indices were used as the input, and the model was
trained and tested on the same data. For the evaluation
in §4.2, we used two additional scenes: Meetingroom, an
semi-indoor scene containing windows with views of the
exterior, and Barn, an outdoor scene. Following the evalua-
tion process of Mip-NeRF [1], images with indices that are
multiples of 8 were excluded in the training process. For
the evaluation in §4.3, we selected four scenes from DTU
with the same Mip-NeRF style test-train split.

Evaluation Metrics We use three types of metrics
to evaluate image quality: Peak Signal-to-Noise Ratio
(PSNR) [7], Structural Similarity Similarity Index Metric
(SSIM) [20], and Learned Perceptual Image Patch Sim-
ilarity (LPIPS) [23]. Higher PSNR and SSIM values,
along with lower LPIPS values indicate better model per-
formance.

Computational Cost All scenes were trained on a single
NVIDIA RTX 3060 GPU, with its training time varying
from 40 min to 60 min, varying on the scene size. Using
hloc [16] to replace COLMAP [17] decreases the execution
time by 50% as shown in Tab. 4 The Clustering and Seed-
ing process costs under 1 minutes in total. Furthermore, the
combined initialization of the point cloud does not intro-
duce additional computational overhead during the 3DGS
training process, since it does not increase the number of
points as visualized in Tab. 3.



Scene Church Meetingroom Barn Std. Between Views
Initialization Method PSNR{ SSIMtT LPIPS| | PSNRT SSIMtT LPIPS| | PSNRT SSIMtT LPIPS| | PSNR SSIM LPIPS
COLMAP [17] 19.13 0.711 0.310 25.15 0.865 0.225 23.48 0.776 0.282 4208 0.123  0.115
Random 18.18 0.692 0.333 24.41 0.851 0.250 19.52 0.731 0.343 3872 0.121 0.113
Clustered 18.96 0.711 0.310 25.09 0.865 0.225 23.09 0.771 0.288 4.102 0.122  0.115
Combined Initialization | 19.16 0.713 0.309 25.17 0.866 0.224 23.24 0.776 0.282 | 4.175 | 0.120 0.114
Table 5. Quantitative comparison of novel view synthesis on the Tanks and Temples Dataset. The colored cells highlight the and

results. Standard deviation between views refer to the standard deviation of the quality metrics across the test views, with
values averaged across the three datasets. A lower standard deviation indicates that the quality of the rendered images is more consistent

and balanced across different views.

4.1. Geometric Error

Tab. 2 presents the geometric error calculations for the
Church scene. The original COLMAP point cloud was used
as the baseline and compared against point clouds sampled
from the ground truth, with Gaussian noise of mean zero
and different standard deviations added. The point cloud
sampled randomly from the ground truth, which has zero
initial geometric error, shows the best NVS results. As
gaussian noise is added to the ground truth, the NVS per-
formace degrades proportionally, with the increase of the
output geometric error. This suggests that higher geomet-
ric error of the initial point cloud results the Adaptive Den-
sity Control process to struggle in placing new Gaussians
accurately, resulting a downgrade in novel view synthesis
quality.

One thing to note is that the COLMAP initialization has
the highest initial and output geometric error among these
metrics, but shows reasonable NVS results. This suggests
that the features extracted and match by COLMAP are more
impactful in the 3DGS optimization process, leaving room
for future research.

4.2. Combined Initialization

Four initialization metrics were evaluated: COLMAP, Ran-
dom, Clustered, Combined. The random initial point cloud
was obtained by randomly sampling the same number of
points to the COLMAP generated point cloud from the
ground truth. Clustered denotes the point cloud generated
by the Clustering process, and Combined Initialization de-
notes the final rectified point cloud through Clustering and
Seeding.

Tab. 3 visualizes the changes in the number of points
throughout the point cloud rectification process. The in-
door scene, Church, shows the smallest change in the point
count, since most part of the scene in densely reconstructed.
The outdoor scene, Barn, shows the largest decrease in the
number of points. This is due to the sparse reconstruction of
outdoor objects in the large scene, which the Clustering pro-
cess defines as outliers and removing them from the point
cloud.

To test the randomness of Combined initialization, the

COLMAP PSNR = 15.70

Clustered & Seeded PSNR= 16.54

Figure 8. Qualitative results of COLMAP initialized 3DGS (Left)
and Combined initialized 3DGS (Right). Combined initialization
shows improved representations of the back of the chairs, shown
inside the red box.

values of the Church scene was calculated as the average of
three different trials. Since each box is small enough, the
random points can be considered as uniform, not showing a
significant difference over each trial.

The evaluation results on novel view synthesis are vi-
sualized in Tab. 5 and Fig. 8. Our method outperforms
the COLMAP initialization for indoor scenes, where most
points with small clusters, which are usually generated out-
side of the building, can be treated as outliers. Removing
the outliers and adding random seeds in sparsely recon-
structed regions with repeated patterns enhances the NVS
results. As the scene contains more outdoor regions, the
effectiveness of our method decreases, since clusters with
small quantities may also be inliers since the scene is much
more complicated. Therefore, our method achieves similar
to better results in Meetingroom, and worse results in Barn
compared to COLMAP initialization.

In addition, our Combined Initialization method showed
reduced standard deviations across different viewpoints for
novel view image renderings. This suggests that the point
cloud rectification process is capable of generating more
consistent quality images across different rendering view-
points.
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SSIM{ LPIPS| | PSNRT SSIM{ LPIPS| | PSNRT SSIMt LPIPS|

Scene 24 37

Method | PSNRT SSIMT LPIPS| | PSNRT SSIMt LPIPS| | PSNRt
Uniform | 24.64 0.928 0.110 24.80 0.895 0.173 23.82
Inverse 24.37 0.929 0.110 25.02 0.905 0.169 25.12
Sigmoid 24.96 0.930 0.109 25.07 0.904 0.168 24.41

0.889 0.197
0.887 0.197

28.02 0.882 0.282 26.18 0.892 0.216
27.77 0.876 0.283 25.75 0.889 0.216

0.877 0.207 27.84 0.879 0.283 ‘ 25.47 0.884 0.221

Table 6. Qualitative comparison of novel view synthesis results across four scenes from the DTU dataset. Uniform refers to the baseline
opacity initialization with a constant value of 0.1, while Inverse and Sigmoid denote confidence-aware opaciy initializations based on the

activation functions described in Eq. (6). The and

| Method | PSNRt | SSIMt | LPIPS| |
COLMAP 19.13 0.711 0.310
Combined 19.16 (+ 0.03) | 0.713 (+ 0.02) | 0.309 (+ 0.01)
CAO 19.29 (+ 0.16) | 0.720 (+ 0.09) | 0.305 (+ 0.05)
Combined + CAO | 19.30 (+0.17) | 0.722 (+ 0.11) | 0.305 (+ 0.05)

Table 7.  Ablation study for Combined Initialization and

Confidence-Aware Opacity Initialization (CAO) on the Church
scene from the Tanks and Temples dataset.

4.3. Confidence-Aware Opacity Initialization

To evaluate the affect of Confidence-Aware Opacity Initial-
ization, we compare three different initialization strategies:
Uniform, where opacities are equally initialized to 0.1; and
Inverse and Sigmoid, where opacities are initialized follow-
ing the activation functions defined in Eq. (6). The hyper-
parameters were settoa = 1,6 = 10,c = 1,d = 15.

Tab. 6 presents the evaluation results on novel view syn-
thesis in four scenes of the DTU Dataset. While both met-
rics that integrate 3D reconstruction confidence into opacity
initialization enhanced the evaluation result, selecting the
activation function as Inverse outperformed Sigmoid.

This mainly results from the difference of the opacity
distribution after applying each activation function, dis-
played in Fig. 9. While the Sigmoid activation function
initializes the majority of the opacities near the minimum
value, 0.05, the Inverse activation function allows a more
equally distributed initialization. The distributed opacities
offers the 3DGS algorithm a more diverse optimization path
towards the optimal opacities, enhancing the quality of the
results.

Finally, the merged result of Combined Initialization
and Confidence-Aware Opacity Initialization (CAO) on the
Church scene of the Tanks and Temples dataset is displayed
in Tab. 7. While CAO mainly brings the performance en-
hancement, Combined Initialization also slightly improves
the performance, and reduces the standard deviation be-
tween different views, enabling the algorithm to maintain
consistent quality.

5. Conclusion

In this work, we introduced Geometric Error as an evalu-
ation metric for point cloud, and demonstrated that reduc-

values per column are highlighted in colors.
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Figure 9. Visualization of the opacity distribution after applying
the Inverse activation function (Left) and Sigmoid activation func-
tion (Right). The minimum and maximum values are normalized
to 0.05 and 0.9, respectively.

ing Geometric Error of the initial point cloud enhances the
performance of 3DGS. We also proposed a point cloud rec-
tification method that combines the strengths of COLMAP
initialization and Random initialization. Evaluated on three
different scenes, our method performs better in novel view
synthesis tasks for indoor to semi-indoor scenes, while
generating more consistent quality images across different
views. Finally, we propose Confidence-Aware Opacity Ini-
tialization, which assigns high initial opacity to points with
low reconstruction errors. This approach addresses the in-
efficiency of initializing all opacities to the same value, en-
hancing the performance in novel view synthesis tasks.

However, despite the improvements shown by Combined
Initialization for indoor to semi-indoor scenes, our method
generates degraded novel view images in outdoor scenes
due to the extremely sparse features of the larger scenes. To
address this limitation, we suggest that future work focus-
ing on developing methods to classify scenes as indoor or
outdoor would potentially improve the performance across
a wider range of scenarios.
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