Gaussian Splatting as SF/(3) Equivariant Features for Imitation Learning

Sanghyun Hahn'? Taekyun Ha'? Inhee Lee'*

Abstract

We present a novel approach to one-shot imita-
tion learning for robotic manipulation that gen-
eralizes from a single expert demonstration to
unseen object instances and poses. Given multi-
view RGB observations and the full trajectory of
single pick-and-place task, our method enables
a robot to perform similar tasks involving novel
objects and novel SE(3) configurations. While
prior works employ SE(3)-equivariant descrip-
tor fields to enhance sample efficiency, these ap-
proaches often demand task-specific neural net-
work training and are computationally intensive.
Our method instead leverages Gaussian Splatting,
a compact 3D scene representation that naturally
supports SE(3) equivariance while encoding rich
geometric and appearance details. By avoiding
task-specific model training, our lightweight 3D
reconstruction enables rapid descriptor-based op-
timization for correspondence and planning. Our
framework significantly reduces both computa-
tional cost and supervision overhead, facilitating
scalable and adaptable imitation learning while
showing comparable performance to baseline.

1. Introduction

Robots that can generalize manipulation behaviors from
a single demonstration have long been a central goal in
Embodied Al. As the complexity of real-world environ-
ments increases, manually designing policies or shaping
reward functions becomes increasingly infeasible. Envi-
ronments with novel object instances, varied poses, and
visual clutter present significant challenges that are difficult
to anticipate in closed-form rule systems. In such settings,
Imitation Learning (IL) offers a more scalable alternative:
rather than engineering reward signals or heuristics, the
robot observes an expert demonstration and directly repli-
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Figure 1. Objective of the project. We aim to achieve one-shot
imitation learning for unseen object poses, unseeen similar objects,
and with distractors. Figure borrowed from (Ryu et al., 2024).

cates the task (Duan et al., 2017; Oh et al., 2018; Ross &
Bagnell, 2010; Jung et al., 2024). However, one of the fun-
damental limitations of IL is its reliance on a large number
of high-quality demonstrations, which are expensive and
time-consuming to collect.

To address this challenge, recent work has explored SE(3)-
equivariant descriptor fields (Simeonov et al., 2022; Ryu
et al., 2022; 2024), which learn features that are consistent
across object rotations and translations. These methods
have shown strong generalization to novel poses and config-
urations, allowing robots to extrapolate from fewer demon-
strations. However, their practical utility remains limited:
they typically require task-specific neural network training,
offline optimization (e.g., diffusion-based sampling), and
significant computational resources to achieve high accu-
racy. Moreover, despite their improved sample efficiency,
they often fall short of true one-shot generalization and
remain sensitive to training data distributions.

In this work, we propose an alternative approach that
sidesteps the need for large-scale task-specific training while
still achieving robust generalization across unseen objects
and SE(3) configurations. Our key insight is that recent
advances in 3D Gaussian Splatting (3D-GS) (Kerbl et al.,
2023) provide a powerful, compact representation of a scene
that inherently supports SE(3)-equivariant reasoning. By
reconstructing the scene from a single demonstration of
multi-view images and representing it as a set of Gaussian
primitives, we form a rich, pose-aware descriptor field that
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encodes geometry, appearance, and object identity—without
the need for explicit feature learning or neural descriptors.

We use this representation to enable one-shot imitation of
pick-and-place tasks. Given a single expert demonstration
consisting of multi-view RGB images, full robot trajectories,
and gripper states, our method reconstructs the scene as a set
of Gaussians, establishes dense correspondences in SE(3)
space, and adapts the trajectory to novel configurations of
pick and place objects. Crucially, this pipeline avoids any
network pretraining or task-specific fine-tuning. Instead,
our method relies on fast optimization over the Gaussian
field to infer new action parameters.

Despite its lightweight design, our method—termed
Gaussian-EFs—achieves competitive performance com-
pared to prior work that uses diffusion models and pretrained
neural fields. On a challenging mug placement benchmark,
our method reaches a 92% overall success rate using only
a single demonstration, closely matching the 95% success
rate of a diffusion-based baseline that requires much heav-
ier training and supervision. These results highlight the
effectiveness of 3D-GS as a plug-in replacement for neural
descriptor modules in robotic learning systems.

Our contributions can be summarized as follows:

* We propose a lightweight one-shot imitation learn-
ing framework that substitutes the task-specific SE(3)-
equivariant neural descriptor with a 3D Gaussian
Splatting-based representation.

e Our method enables generalization to novel object
instances and SE(3) poses from a single multi-view
demonstration, without requiring pretraining or neural
network inference at test time.

* We empirically show that our approach achieves com-
parable or superior performance to existing descriptor-
field-based methods, while being significantly more
efficient and easier to deploy.

By reducing reliance on large datasets, pretrained models,
and computational overhead, our method brings imitation
learning closer to real-world applicability, enabling low-
effort deployment in dynamic or user-specific environments.

2. Preliminaries
2.1. Gaussian Splatting

Gaussian Splatting (Kerbl et al., 2023) is a well-developed
3D representation for scene reconstruction, showing advan-
tages on quality and rendering speed compared to previ-
ous volume-rendering approaches (Mildenhall et al., 2021;
Miiller et al., 2022). 3D-GS is similar to colorized point
clouds, with a volume shaped like a 3D Gaussian.

Specifically, 3D Gaussians {G; }2, where the i-th Gaussian
is represented by G; = {ui,q., si,ci,o;}, where pp €
R? is the Gaussian center, s € R? and ¢ € SO(3) are
respectively the scaling factor and the rotation represented
in quaternion to define the covariance matrix 3 € R3*3,
c; € R3 is the color, and o; € R is opacity. For a 3D query
location = € R?, its Gaussian weight g(z) is represented

as:
g(x) = e 3@ wIE N @mw), )

where the symmetric 3D covariance matrix 3 € R3*3 is
represented by

> = RSSTRT. 2)

R = quat2rot(q) is a rotation matrix converted from g, and
S = diag(s) is a diagonal matrix from scaling factor s.

Similar to rendering point clouds using a point-rasterizer,
3D-GS rasterizes these 3D Gaussians {G;}}; by sorting
them in depth order in camera space and projecting them to
the image plane. If N number of Gaussians are projected
on 2D location p € R2, the pixel color C(p) is given by
a-blended rendering as follows:

1—1

C(p) = cio [J(1 - o), 3)
i€EN Jj=1

a; = g;"(p) - o;, )

where g2 is the weight after the 2D projection of 3D Gaus-
sian g; to the image plane, and we use the Jacobian of the
affine approximation of the projective transformation, fol-
lowing previous approaches (Zwicker et al., 2001; Kerbl
et al., 2023). As the output of 3D scene reconstruction, we
obtain the parameters of 3D Gaussians G = {G;}M, by
optimizing them with reconstruction loss calculated from
rendering Eq. (3).

2.2. SE(3) Equivariance in Imitation Learning

SE(3), the Special Euclidean group in 3D, is a Lie Group
that represents all possible rigid transformations in the 3D
space. An element of SE(3) can be represented as a4 x 4
matrix:

R € SO(3)
teR?

3 x 3 rotation matrix
translation vector

®

Equivariance denotes the property of a function whose out-
put changes identically to the action applied on the input.
The SE(3) equivariance of a vector field f : R3 x X —

R2+1 can be defined as:
Di(R)F(xX) = f(TX|T 0 X) ¥T = (R,v) € SE(3),

XeX xeR?
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Figure 2. Overview of the proposed pipeline. The task scene is
reconstructed using 3D Gaussian Splatting from multi-view RGB-
D images. Gaussian Matching aligns the reconstructed scene to the
demonstration Gaussians and estimates SE(3) transforms, which
are used to adapt and execute the pick-and-place trajectory.

where D;(R) is the degree | Wigner D-matrix of the repre-
sentation D(R), and X is a set with action T ox = Rx+ V.
In the scope of robotic manipulation, z is an arbitrary 3D
point with the vector field f conditioned on the object point
cloud X. This property enables the robot to expand its
prior knowledge to unseen poses, reducing the number of
demonstrations across multiple object poses.

3. Methods

Our goal is to enable a robotic manipulator to generalize
a pick-and-place task to novel object instances and poses
using only a single demonstration. To achieve this, we pro-
pose a lightweight and modular pipeline that combines 3D
Gaussian Splatting with Gaussian-based SE(3) alignment
and trajectory adaptation. The pipeline consists of three
main stages: (1) Segmented Gaussian Splatting, (2) Gaus-
sian Matching, and (3) Trajectory Generation. An overview
of the full pipeline is illustrated in Fig. 2.

The system takes as input a set of multi-view RGB-D im-
ages captured from the task scene, along with precomputed
Gaussian representations from a single expert demonstra-
tion. It reconstructs the task scene using Gaussian Splatting,
performs feature-based Gaussian matching to align objects
between the demonstration and the current task, and finally
uses the estimated SE(3) transforms to adapt and execute
the manipulation trajectory.

3.1. Segmented Gaussian Splatting

In the first stage, we construct compact 3D representations
of the pick and place objects from the demonstration using
3D Gaussian Splatting (Kerbl et al., 2023). This process
begins with multi-view RGB images captured from a wrist-
mounted camera during the expert demonstration.

To isolate the relevant objects, we use Grounded Segment
Anything Model (Grounded SAM) (Kirillov et al., 2023; Li
et al., 2023) to segment the pick and place objects across
all views. These object masks are then used to filter the im-
age content, allowing us to reconstruct only the segmented
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Figure 3. Pipline of Segmented Gaussian Splatting. We plan
to generate the Gaussian Set of the Pick and Place Object by
exploiting a 2D Segmentation Model and Gaussian Splatting.

regions through vanilla Gaussian Splatting. This results in
two sets of Gaussians, one for each segmented object:

Noic
Gpick = {gz}l:pika

Each Gaussian g is parameterized by its centroid position
x € R3, opacity a € R, rotation (expressed as axis-angle
vector) 7 € R3, and scale s € R3. These features implicitly
encode object shape and structure, acting analogously to
SE(3)-equivariant descriptor fields from prior work (Ryu
et al., 2022; 2024).

N,
Gplace = {gj}j:p]dlce

3.2. Gaussian Matching via SE(3) Alignment

The next step is to compute the SE(3) transformation that
aligns the demonstration scene to the current task scene.
Specifically, we compute the transformation that maps the
demonstration pick object to the task pick object, and like-
wise for the place object. This is accomplished by matching
their corresponding Gaussian sets.

We concatenate each Gaussian’s parameters into a single
feature vector:

F(g) = concat(u, @, q, s) € R

Matching is performed via a feature-augmented version of
the Iterative Closest Point (ICP) algorithm (Besl & McKay,
1992), in which correspondences are determined by nearest
neighbors in feature space and the SE(3) transformation is
optimized to minimize bidirectional alignment error.

The optimization objective is as follows:

min |: Z ||F(Tg)*F(N<Tgathsk))“§

TeSE(3
@) 9EGdemo

+ Y IF) - FIV(E. T Gan)l3 ] ©)

9’ €Glask

Here, N (g, G) denotes the nearest Gaussian in set G to
Gaussian g, under L, distance in feature space, and T - g
applies the SE(3) transformation to the Gaussian’s centroid
and orientation.
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Figure 4. Generalization to unseen SE(3) poses. Our method successfully adapts the demonstrated pick-and-place trajectory to novel
target object poses, including variations in position and orientation. Even under large SE(3) transformations, the robot accurately grasps

and places the object using only a single demonstration.

Table 1. Mug Pick—Place Success Rate Results

Method Without Mug
Pretrain More than 1 Demo. Neural Net. = Pick Place Total
R-NDFs [1] X X 0.83 097 081
' SE@3)-DiffusionFields [2] v X x ] 075 (nfa) (na)
 Diffusion-EDFs [3] . o x x ] 0.99 096 095
" Gaussian-EFs (Ours) . oy v 094 090 092

This alignment step is applied separately to both pick and
place objects, resulting in two transforms:

Tpick, Tplace € SE(3)

These define how to warp the demonstration frame to
match the task scene configuration. We find that the
inclusion of full Gaussian features—beyond position
alone—significantly improves alignment accuracy, espe-
cially in cluttered environments or for objects with ambigu-
ous geometry.

3.3. Trajectory Generation and Execution

Having estimated the object-level SE(3) transforms, we now
generate the robot motion plan by adapting the demonstra-
tion trajectory to the task scene. The demonstration provides
the full end-effector trajectory and gripper state sequence,
including the grasp pose Tirasp, demo for the demo pick object.

We apply the computed transforms to derive the grasp pose
for the target object as:

Tgrasp, task — Tpick . Tgrasp, demo

This yields the pose at which the robot should grasp the
novel object.

After grasping, we compute a placement goal that aligns
the object with the placement pose from the demonstration.
Since the object has already been transformed by Tk, we

map it back into the demonstration frame via:

-1
Tplace,goal = Tplace . Tpick : Tgrasp, task

Finally, we use an off-the-shelf motion planner to generate
a collision-free trajectory from the grasp pose to the place-
ment goal. The manipulator then executes the same relative
motion as shown in the demonstration, now grounded in the
geometry of the task scene.

3.4. Summary of Advantages

This three-stage pipeline allows the robot to perform a pick-
and-place task on previously unseen objects with arbitrary
SE(3) configurations, using only a single demonstration. In
contrast to prior work based on neural descriptor fields or
diffusion models, our method does not require task-specific
pretraining or multiple demonstrations. It instead leverages
the rich, differentiable structure of 3D Gaussians to establish
dense object correspondences and adapt actions accordingly.

In our experiments (Table 1), this lightweight pipeline
achieves success rates comparable to fully trained baselines
while being significantly faster to set up and generalize. The
modular design also permits easy integration with various
motion planners and gripper controllers.



Gaussian Splatting as SE(3) Equivariant Features for Imitation Learning

4. Results

4.1. Implementation Details

The Gaussian Matching algorithm first constructs 100 candi-
date rigid transforms in S E(3) by setting each translation to
the vector connecting the center of mass of the two objects,
and selecting the rotation from a set of 100 uniform samples
over SO(3). Starting from every candidate, it minimizes the
objective in Equation (6) with the Adam optimizer (Kingma
& Ba, 2014). The transformation that attains the lowest
final loss is reported as the algorithm’s estimate of the true
transformation matrix.

The trajectory generation process is performed by an Opera-
tional Space Controller implemented by PyBullet (Coumans
& Bai, 2016-2021), allowing the robot to follow the demon-
stration trajectory transformed corresponding to the esti-
mated SE(3) transformations. All experiments were con-
ducted on a custom simulation environment on robosuite ().

4.2. Quantitative Results

We evaluate our method, Gaussian-EFs, on a mug pick-and-
place task and compare it with three existing approaches:
R-NDFs, SE(3)-DiffusionFields, and Diffusion-EDFs. The
results are summarized in Table 1.

Our method achieves a 92% overall success rate, outper-
forming R-NDFs and SE(3)-DiffusionFields, and approach-
ing the performance of the fully trained Diffusion-EDFs
(95%), while maintaining a significantly lighter pipeline.
Notably, Gaussian-EFs is the only method that succeeds
without requiring pretrained weights, multiple demonstra-
tions, or heavy neural network components, making it highly
efficient and deployable in practical settings. R-NDFs
achieves moderate performance (81% total), but relies on
hand-crafted descriptors and struggles with SE(3) general-
ization. SE(3)-DiffusionFields performs poorly in the mug
setting (75% pick success, no placement results reported),
and requires pretraining on shape-specific tasks. Diffusion-
EDFs achieves the highest total success rate (95%) but at the
cost of requiring pretrained networks and offline diffusion-
based optimization. In contrast, Gaussian-EFs achieves
comparable performance (94% pick, 90% place, 92% to-
tal) while maintaining one-shot generalization with minimal
overhead.

These results demonstrate that Gaussian-EFs provides a
strong balance between accuracy and efficiency, making it
a promising direction for one-shot imitation learning with
SE(3) equivariance.

4.3. Qualitative Results

Our method demonstrates strong generalization across both
pose variation and object diversity. As shown in Fig. 4, the

with Gaussian features without Gaussian features

Figure 5. Gaussian Matching. Gaussian features allows the
matching of cups with different pose and different shape in same
category.

Failure of Robot Joint Threshold

Failure of Gaussian Matching

Figure 6. Failure cases. Our method occasionally fails due to two
main reasons. Left: The robot is commanded to a pose that exceeds
its joint limits (e.g., shoulder or elbow configurations beyond
its physical range), resulting in unreachable targets or trajectory
deviations. Right: Inaccurate alignment between demonstration
and task objects—particularly with tall, narrow mugs—can cause
the robot to miss the grasp point despite being close, leading to
grasp failure.

robot successfully performs the pick-and-place task even
when the target mug appears in significantly different SE(3)
configurations, including varying orientations and transla-
tions from the demonstration scene. The estimated SE(3)
transformations reliably align the manipulated objects, al-
lowing trajectory adaptation without the need for retraining.

Furthermore, our approach generalizes to novel mug in-
stances that differ in geometry, scale, and color from those
seen in the demonstration. Despite these changes, the
Gaussian-based matching preserves semantic correspon-
dences, such as handle alignment and graspable surfaces.
These results highlight the flexibility of our descriptor-free
pipeline, showing that the combination of segmented Gaus-
sian splatting and lightweight optimization provides a robust
solution for one-shot manipulation under real-world vari-
ability.
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5. Conclusion and Discussion

We presented a lightweight and training-free framework for
one-shot imitation learning using 3D Gaussian Splatting. By
leveraging SE(3)-equivariant Gaussian features extracted
from a single demonstration, our method generalizes pick-
and-place tasks to novel objects and poses without requiring
additional training or multiple examples. Through extensive
experiments, we demonstrate that our pipeline achieves
strong performance across a variety of SE(3) configurations
and unseen object instances.

Limitations and Future Work

The system occasionally fails due to physical constraints
of the robotic hardware. For example, as shown in Fig. 6,
the robot may be commanded to reach a configuration that
violates joint limits, such as extreme shoulder or elbow
positions. In such cases, the motion planner cannot execute
the desired trajectory, resulting in task failure.

Also, failure can occur in cases where object alignment is
not sufficiently accurate. For instance, with tall and nar-
row mugs, the Gaussian-based matching may lead to slight
pose misalignments that cause the end-effector to miss the
grasping region by a small margin—enough to compromise
execution.

Another limitation lies in the reliance on high-quality 3D
reconstruction. Our pipeline assumes access to a sufficient
number of calibrated RGB-D views (e.g., ~27 views) to
produce clean Gaussian splats of the objects. In scenarios
with limited camera access, occlusion, or poor depth quality,
the resulting Gaussians may be too sparse or noisy for robust
matching.

To address these issues, we plan to explore the use of single-
view Gaussian reconstruction methods and learnable priors
to reduce the dependence on multiple cameras. We also aim
to investigate hybrid approaches that combine our descriptor-
free pipeline with fast pose estimation networks to support
faster execution and closed-loop control. Additionally, inte-
grating robustness against robot kinematic constraints into
the motion planning module is a promising direction for
enabling safer and more reliable deployments in real-world
settings.
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